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Absbact. Integrable dynamical systems are constructed on semidirect non-compact Lie 
algebra SO(6) x US, where US is the topological vector space on which the representation of 
SO(@ is realized. The constmction is done with the help of the sectional operators intro- 
d u d  by Trohov  and Fomenko. Our equations generalize those of a rigid body immersed 
in a fluid and those of Manakov on SO(6). Our equations contain the system of two 
interacting rigid bodies immersed in a fluid, as a special case. 

1. Introduction 

Lie algebra is nowadays one of the most important tools for exploring the properties 
of nonlinear integrable systems [l]. An interesting feature is that it can either be used 
to solve the nonlinear system or it can be used to construct it [2]. An important 
landmark within such attempts is the celebrated theorem due to Adler-Kostant-Symes 
[3]. It has already been observed that whether the Lie algebra is finite- or infinite- 
dimensional the AKS theorem can always be used to construct the integrable equation. 
In this respect it may he mentioned that the complete integrability of such nonlinear 
dynamical systems is always guaranteed due to the existence of Liouville’s theorem, 
which demands the existence of an infinite number of conserved quantities in involution. 
When the Lie algebra under consideration is either simple or semi-simple the method 
has been widely discussed and applied to several situations. However, some new com- 
plications arise if the Lie algebra is a semi-direct one, i.e. if we consider the semi- 
direct product of a Lie algebra and a topological vector space V, which serves as the 
representation space of the algebra. If one considers such a Lie algebra as the starting 
point then some additional complications do arise [4]. Such a situation was discussed 
explicitly by Trofimov and Fomenko [SI for the case of a rigid body immersed in a 
fluid. They showed that, in the case of semidirect Lie algebra, special care is needed 
to map between the dual space and the original space of the Lie algebra. If Cis  such 
an operator, C: G*+G on 6, then the equations representing some mechanical system 
on G are written as x=ad:(,,(x), the analogue of Hamilton-Jacobi theory. Another 
approach to the same problem utilizes the procedure of Hamiltonian reduction on the 
cotangent bundle of the Lie Group. Such a methodology was adopted by Ratiu [5] 
while discussing dynamical systems on semi-direct products of Lie~algebras. The system 
of equations constructed is a Hamiltonian system on all orbits of the co-adjoint 
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representation. But if we do not have any condition on C then we cannot say anything 
about the complete integrability of such a system. 
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2. Formulation 

Let b be a Lie algebra and'H the corresponding group: let p :  h-.End( V) be a represen- 
tation of h in the linear space V; and a: H-+Aut( V) the corresponding representation 
of the group. Let O(x) denote the orbits of the action of the group H on V, X E  V. We 
now introduce the linear operator, termed 'sectional operator', Q: h- V, where the 
vector field y Q = p ( Q X ) X  will then arise on the orbits. A very special class of sectional 
operators which form a many-parameter set with two basic parameters aeV,  
bEKer &; &h = (ph)a is important for our applications. Let a be a point in the general 
position in the sense that the orbit through a has maximal dimension. Let 
K=Ker @o,cH be the annihilator of a, and let bEK be any general element of K. 
Consider the action of p b  on V. Denote Ker(pb) c V by M. It is clear that O E M  and 
H=K+K', where K is the algebraic complement of K in H. We may now note that 
V can be written as V=M@Im(pb). If we consider the intersections, &Kn M = B  
and $oKn Im(pb)=R' then we observe that & K  has been decomposed as &K'= 
B+R'+P. The complementary subspace P can be chosen in many ways. We now 
consider in Im(pb) the space z which is the algebraic complement of R on Im(pb), that 
is, Im(pb)=z+R'. If T is the complement of B in M ,  then at once we may set 

V= T+ B i  R'+ Z R= (pb)-'R' 

where (@)-I is the operator which is inverse to pb on Im(pb). So K'= E +  8+ p,  where 
E=&'B, 8 = $ , ' R ,  p=&'P. 

So the sectional operator Q can be defined as 

Q: V+H, Q: T+B+R+Z+K+b+R+p.  

By setting; 

ID  O O o \  

\o 0 0 D I  

Here D is the operator generating the map T+K and D' gives Z+p. If V=H*, 
p=ad*; H+End(H*) then 

&'p(b)=#;' ad:. (2) 

3. Sectional operators and rigid-body dynamics 

The methodology of sectional operators can be profitably used to discuss the dynamics 
of a rigid body. The advantage of such a formulation is that of generalized group- 
theoretic methods being used to tackle actual physical problems. To this end, let $9 be 
a semi-simple Lie algebra, B(X, Y) be the Cartan-killing form, and f be a smooth 
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function on 9. Let us associate with this function a dynamical system on the cotangent 
bundle T+G of the group by extendingfto a left-invariant function F defined on the 
whole space T* G. Let grad f be a field which is dual to the differential dA i.e. for the 
killing form we obtain B(VJ {)={(f). Then the Euler equations can be written as 

R= [X ,  Vf(X)l. (3) 

Let 9 = SO(n) be the Lie algebra of an orthogonal group and let us take the diagonal 
real matrix 

We 

\ I 
"der on SO(n) the operatc 

Y,t=[X, Y X l  

&#&i 

Y(X) = IX 

i#j. 

X I .  Then the set 

(4) 

f equations 

(5 )  

is called the equation of motion of an n-dimensional rigid body. If we represent the 
algebra SO(n) as the algebra of skew-symmetric real-valued matrices X = ( x , )  then 
Y(X)=((&+ Al)x,-). This immediately gives 

Putting n = 3 ,  we find that these equations coincide with the classical equations of 
motion of a three-dimensional rigid body. 

We can define the analogues of the equations of motion of a rigid body on an 
arbitrary semi-simple Lie algebra. We can construct a many-parameter set of the opera- 
tors $: G-G not only for the complex semi-simple Lie algebras but also for their real 
compact and normal forms. Then all systems described by the equations i = [ X ,  $XI 
are completely integrable on the orbits in general position and therefore their integrals 
define complete commutative sets of functions on both semi-simple Lie algebras and 
on their real forms. 

To make contact with the physics more pronounced. we now turn to the equations 
of inertial motion of a multi-dimensional rigid body in an ideal fluid using the Formalism 
of Lie theory. 

Let E(n) be the Lie group of rigid motions of 88". E(n) is the semi-direct product 
of the group SO(n) and the commutative subgroup of translations. The matrix 
representation of the group E(n) has the form [7]. 

The Lie algebra { (n)  of the group E(n) is a semi-direct sum SO(n)@,R", 
4: SO(n)+End R" is the differential of the standard representation of SO(n) in R", R" 
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is regarded as a commutative subalgebra, and c(n) has the matrix form 
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fo(4 li). Y" 

0 ... 0 0 

The commutation rule in the Lie algebra c(n) has the form 

[ (x,  U), (Y ,  u)l= ([% Yl, x(u) -m) (9) 
where x, yeSO(n)  and U, U, ER". 

product in R", then the pairing is given by, 
If we let B(X, Y )  be the killing form on SO(n) and (X, Y ) .  be the Euclidean scalar 

((Xl,UI)> (x2, ~2) )=ml ,xz )+ (u I ,  U2)C. (10) 
Let us identify the space e(.)* which is dual to c(n) with {(n) .  To complete our 
formalisms we compute the form of the coadjoint action ad* under the isomorphism 
c(n)*=c(n) .  We use the following definitiou of the coadjoint action, 

(11) {ad.?y, z> = 0, a d 2 >  
where ad denotes the usual adjoint action in the Lie algebra. In our case, let 
X€SO(n),  U E W "  

yESO(n)*=SO(n) UE(oB")*= W" 

aKy, d(x, ~))lsocn,=b, xl+;(uur-ud) 

then using (11) we obtain, 

(12) 

where we have used the notation a(x, i)=ad$(x), 5~9, x&*. This incidentally shows 
why our our approach is different from the usual one via the AKS theorem. 

Let 9 be an arbitrary Lie algebra. The Euler equations on 9* are the system of 
differential equations i=a(x,  Cfx)), C: FI*+ being a linear operator, a(x, 5) being 
the linear functional. On the orbits of the coadjoint representation ad" of the group G, 
the Euler equations are the Hamiltonian ones with respect to the canonical symplectic 
structure. 

We are now ready to construct sectional operators for the coadjoint representation 
of the algebra We have a many-parameter set of sectional operators 
Q: c(n)*-c(n) for which the Euler equations are completely integrable Hamiltonian 
systems on the orbits of the coadjoint representation of the group E(-). Let us consider 
in c(n)* (and hence, in c ( n ) )  the subspace [(n+ 1)/2]-2 

a((u, d(x ,  u))ln~= -xu 

K= 0 R ( e 2 i + , , ~ + , ) Q ~ u u . c 5 ( n )  (13) 
i - 0  

where eij is the elementary skew-symmetric matrices, and U, the standard orthonormal 
basis in W". Denote the corresponding subspace in {(n)* by K*. Let K' denote the 
orthogonal complement to the subspace Kin e(n) or ((n)* with respect to the scalar 
product defined earlier. 
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Let neK*.  Let us consider the mapping &: c(n)-c(n)*, x+a(a, x)e<(n)*. Then 
&K' cK*', where K'  is the orthogonal complement to K and similarly for K*'. Note 
that if a is in the general position, then K=Ker &and qL: K'+K*' is an isomorphism. 
Hence, the inverse mapping 4;': K*'+K' is defined. 

Let us write E(n) as the direct sum of the linear spaces <(n) = K ' g K .  Following the 
general method, let aeK* .  b d ,  a being in the general position. If Z = x + y e c ( n ) * ,  
XEK*' ,~EK,  then we have the expression for the sectional operator as, 

Q(u, b, D)z=&' ads*x+D(y) 

D: K*+K being arbitrary. 

We are now in a position to write down the general equations; 

where Q(a, b, D) is the sectional operator which is a noncompact analogue of the 
operators $o.b.D describing the motion of a rigid body. We have Q(u, b, 0): &n)*+f(n). 
Hence YQ is defined on the space 9*. The equations (15) can be written explicitly as: 

Y= [ Y, XI + f ( u d  - uu3 

ir= -xu 

where we have the explicit dependence 

(x. 4 = Q(a, b, D ) ( n  0) (17) 

because the operator Q(a, 6,  D )  has been defined explicitly, we can now say, following 
reference [SI, that the system of differential equations 

~ = a d & , ~ , D d ~ )  

on the co-algebra <(n)*, written explicitly as ( ) is a Hamiltonian algebra on the orbits 
of the coadjoint representation ad* (E(n)).  When n = 3 ,  the system coincides with the 
equations of inertial motion of a rigid body in an ideal fluid. Generalizing in the spirit 
of the above discussion, we can assert that the~equations (16) describe the inertial 
motion of a multi-dimensional rigid body in an ideal fluid for any n. 

For the sake of clarity, let us discuss,.although briefly. the classical equations of 
inertial motion of a three-dimensional rigid body in an ideal fluid. Introduce a moving 
frame of reference. Let ui be the components of the linear velocity of the origin in the 
moving frame. Alternatively, in a fixed frame of reference, U, may be thought of as 
components of the fluid velocity. Also let mi be the components of angular velocity of 
rotation of the rigid body in the fluid. The kinetic energy of the body and fluid system 
has the form 
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A, ,  Bij, Cij being constants depending on the body form and the density of the body 
and the fluid. Let 
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Then the inertial motion of a rigid body in an ideal fluid can be completely described 
by the equations 

E = M x o + L x  U 
dt 

dL - = L X o  
dt 

where U= (U,, UZ, us) and o = (01,  w z ,  03). For more discussion on this point and 
related questions, we refer to reference 151. 

Let us now outline the motivation for the present work. Although the sectional 
operator technique has been used to discuss the case of a three-dimensional rigid body 
in an ideal fluid, no higher-dimensional case has as yet been discussed. We therefore 
present a systematic and extended investigation for a higher-dimensional case (n  = 6 )  
and construct new integrable dynamical systems. Manakov [8] has already dealt with 
the pure SO(6) case. Our approach is, in a sense, a generalization of his work. Moreover, 
we postulate that our equations contain the system of two interacting rigid bodies 
immersed in an ideal fluid as a special case. tn this way, we have also extended the 
work done in [ 5 ] .  

Lastly, let us mention that, although the algebra SO(n) x V, is a simple Inonu- 
Wigner contraction of SO(7) with respect to the coordinate 7, we have not endeavoured 
to tackle our problem that way, because the whole aim of the present work is to 
construct new integrable dynamical systems related to some physical problem and not 
merely to present some mathematical artifice. Integrability is guaranteed in the sectional 
operator approach. Hence we feel that the approach we have adopted is an elegant and 
useful one apart from being a natural complement to the usual methods to obtain 
integrable systems like the AKNS and AKS formalisms. 

4. Construction of Q in case of nokcompact algebra SO(6) + V, 

SO(6) is the real Lie algebra of all 6 x 6 real antisymmetricmatrices [9]. Let us introduce 
6 x 6 real antisymmetric matrices Mpq defined by 

(Mpq),k=6H6qk-6pk6qi j , k , p , q = l , 2 ,  ..., 6 

i.e. 

M..=e..-e ‘I ‘I / I  (23) 
where e, is the matrix with the unit element in the intersection of the ith row and j th  
column and zero elsewhere. 
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The Lie algebra SO(6) is defined by the commutation relation 

[M,,, Mrsl=6~,Mrs- 6,Mp,-60rMq,+ SnSMqr. (24) 

Let el (L= I , .  . . ,6) denote the basis vectors in the vector space V6. With the represen- 
tation of SO(6) introduced above we can say that V6 is the topological vector space 
on which the representation ofSO(6) is realized; ofcourse, v6 also serves as an invariant 
subalgebra of SO(6) x V6. The role of V6 becomes quite clear in the context of our 
discussion in section- 3. 

We start with the identification of the subspaces K and K1. 

Q(u1e1 +u*e~+u3e3+me4+u.&) 

=FI@F~ (say). (26) 

If we denote by the letter 'a' the element of general form EK and f denotes the corre- 
sponding element EKI,  then we get at once 

W f  = (PI, A l l  +4(F24 - A A ) ,  -A  I F2) (27) 
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and 
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(294 

(30) 

~Mx) =ad:b=([BI ,XII+$(B&-X~&),  -XI&) (31) 

i e = [  -fi2a2-~4a3 - f i l s  1 -iusas I 

0 fila2 f i 2 a 2 + 4 u ~  
I 0 ius% . 

0 

Let us now consider two general elements bEK and xEK' with the structures given in 
equations (25) and (26). For example, b is written as 

b = (b, MI2 + bZM3.J Qb3e6 = BI QBz .  

Similarly, two parts of x are denoted as XI and X 2 .  Whence we get 

which can immediately be evaluated as in equation (27). We at once obtain 

where ( P ,  Q, R, S )  each is a block of 3 x 3 matrices and p ,  q are three component 
vectors, all given below: 

( 3 3 4  i 0 0 n, j i  - a2fs 
0 ~ j i + n , f i  

- (n , .~ , -w i )  - ( ~ ~ k + n , m  0 
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where 

So finally the form of the sectional operator Q(a, b, 0) is given by 

Q ( ~ , ~ , ~ ) [ F I @ F z ~ = Q I @ ~ ~  (35) 
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Thus all equations above are crucial in the construction and presentation of the sectional 
operator Q(a, b. D).  

5. Dynamical system 

The integrable equation of motion can therefore be written as 

.f= adZ(,b,&? 

=([PI, Qil+$(FzQ:-Q2G), pQiF2). (38) 

Evaluating the right-hand side of this equation explicitly with the expression for Q given 
above, we obtain the equations for-the dynamical system constructed on SO(6) x V6 via 
the sectional operator approach. 

cl =-u2(aIfi +pIfi+ ~ l U 6 ) - Y ( ~ l h - & f 8 ) - ~ 4 ( ~ 1 f 4 + ~ 2 h )  
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j 3 = f i ~ a 2 ~ + ~ 1 f r ) - f i ( a ~ f i + P ~ ~ + ~ 2 ~ 6 ~ - - f ? ~ a r ~ + ~ r ~ + r l ~ 6 )  
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= -fil(a,h+&ji) -fi3(alfs -&A) +j i (a l f i  + plh+ Y l U 6 )  +: fi f~ 

So we have 21 coupled nonlinear equations which reduce to those of Manakov for 
n=6 and if all u,=O. 

5. Discussions 

In our above analysis we have shown how extended dynamical systems can be con- 
structed on non-compact Lie algebras, keeping intact its integrability property. This 
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approach depends on the construction o f  the sectional operator introduced initially by 
Fomenko and Trofimov. Our equations give a generalization of those of Manakov for 
pure SO(6) and also those of a rigid body immersed in a fluid which deals with the 
case SO(3) x V,. The Hamiltonian of the present system is given by the invariant 
( A  Q(a, 6 ,  D ) ( f ) )  and from its explicit structure it is not difficult to read off the 
Poisson structure. 
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